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Abstract 

A method of construction of quantum field theory as a limit of some approximate theories 
is proposed. The way to find the limit is indicated and discussed in more detail for the free 
field. Suggestions for interacting fields are also given. 

1. Introduction 

In recent years J. Glimm and A. M. Jaffe have proved the existence of  a 
non-trivial model in two-dimensional space-time (Glimm & Jaffe, 1968, 
1970). Their proof  consists in achieving the mathematically sound and 
physically satisfactory theory by precizing some commonly used, although 
obviously ill-defined notions in the traditional quantum field theory. 
We will also proceed according to the above principles. 

In our opinion, other approaches which could be used alternatively 
with that of  Glimm and Jaffe are also worth consideration. The theory 
described below is very similar to the widely used theories involving boxes 
but, as will be clear, its physical content is completely different. We shall 
construct, at first, an approximate theory which will be valid for arbitrary 
dimensional space-time. The simple, intuitive approximation which we are 
going to introduce will already imply in what the sense the approximate 
theory has to converge. 

2. CMation and Destruction Operators o f  Particles with 
Approximated Momenta 

For simplicity, we shall consider only the case of a real scalar field. Our 
starting-point is to write down the purely formal expression 

a*(~) = f d3 k6 (3) (!3 - k) a*(~) (2.1) 
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where 
a*(/3) = / at(~) 

[a(/3) 

denotes both traditionally defined creation and destruction operators of a 
particle with given momentum/3. Within the quantum mechanics we are 
acquainted with the following (also formal) representation of Dirac's 
5 (3) symbol: 

5(3)(~ - Fc) = ~ u,(rc)u,*~) (2.2) 
n=0 

where u,(~) are eigenfunctions of an observable and n denotes a triplet 
(nl,n2,na) of integral numbers. Substituting the expansion (2.2) into (2.1) 
we get 

eo  

a*(~) = ~ u,*(~) a*(n) (2.3) 
u=0 

where un* = un* when standing next to at (n) and Un* ---- Un when standing 
next  to a(n), = .*.,(pl) "3(p3) a n d  

a*(n) = S d3 k u,*(rc) a*(rc) (2.4) 

is a formal expression for operators which satisfy canonical commutation 
relations with the Kronecker symbol. Now, the possibility of some approxi- 
mate calculations becomes evident. Namely, we can replace 5 ~3) by a trunc- 
ated series 

N 
= (2.5) 

n=0 

where N denotes a triplet (N1,772, N3) of finite integral numbers and we get 
N 

a*(/3)~aN*(~)= ~ u,*(~)a*(n) (2.6) 
n=0 

which are operators on the Hilbert space of states if u,(/3) e L2 (are square 
integrable. We choose as u,,(p~) the Hermite-Tschebyshev functions 

1 
u,,(pl) - ~(2", n~ !a/re) exp(-Pi2/2) H,~(p3 (2.7) 

[H,~(p~) are Hermite-polynomials] which span both L2 and the Schwartz 
space S. The formula (7) is written in natural units e = h = 1 = 1, where 
/ is  a constant with the dimension of length (Rayski, 1972). 

The truncation (5) means that instead of~5 ~3) which is a formal eigenfunc- 
tion of the momentum operator some functions concentrated around/3 = 
from the Hilbert space are to be used. This enables us to attach to the opera- 
tors aN*(/3) the physical interpretation of creation and destruction operators 
of a particle with an approximated momentum. When on builds up the 
theory, starting with creation and destruction operators of particles with 
sharply given momenta, then at first, the possibility of a comparison with 
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physical experiments (i.e. localised in space and time), due to Heisenberg's 
uncertainty relations, is excluded. In the theory involving, for example, 
at the beginning, the aN*(~)-operators, it is not the case. We shall call the 
theory with aN*(fi)-operators our approximate theory. Let us also mention 
that this approximate theory is not Lorentz-invariant, but this is not a 
disqualifying feature if one accepts Dirac's philosophy as we do (Dirac, 
1970). It is seen that one cannot put on equal footing our approximate theory 
and its limit case at N-+ ~. 

Having introduced the aN*(/3)-operators we can write 

1 ~(  dap 
~bN(x) a-/2(2rc)3 .=o J ~  [u.(~) a(n) exp(i~2) + u.*(p) at(n) exp(-ip~)] 

(2.8) 
with e~(p) = ~/(/3 z + m z) and define the operator 

HN = Ho~ + HIN (2.9) 
where, in analogy to the hamiltonian of the free field 

HoN = f. d3 p co(~) aN* (~) aN(~) (2.10) 

and HIN is also an expression in which traditional a*~)-operators are to 
be replaced by the aN*(fi)-operators. As the next step we define 

~bN(2, t) = exp(--iHN t) ~bN(2) exp(iH~r t) (2.1 I) 

Thus, this time-dependent operator is to be understood as an approximate 
solution of field equations. Finally, we will evaluate the following scalar 
products: 

WkN(~I q . . . . .  ~k tk) = [~ON, ~bN(2~ tO,.. . ,  ~bN(2k tk) ~ON] (2.12) 

with ~OoN denoting the ground eigenstate of the HN-operator. We wrote 
(2.12) in analogy to Wightman's distributions and we shallcall them approxi- 
mate distributions. The ~bN(2t)-operators are not depending upon the 2- 
variable within generalised functions but within ordinary functions. Con- 
sequently, our approximate distributions (2.12) will be nothing else but 
just ordinary functions (regular distributions). 

Now, the programme is to investigate the convergence of sequences of 
our approximate distributions (2.12) at N-+ oo for each fixed k. If corres- 
ponding limits were to be shown to exist in the distributional sense and the 
limit distributions would manifest all the characteristics of Wightmann's 
distributions then, referring to Wightmann's reconstruction theorem, 
we could state that a plausible approximation in the quantum field theory 
has been constructed. We can write (2.12) as 

�9 . .  u.,(~k) x 
{~[2(270a]} * J v'[co(pl) . . . .  ,CO(Pk)] U.:(pl) . . . . .  

t /1 t//~ 

[~kos, a*N(nl q) . . . . .  a*N(nk tk) ~koN] exp(i ~. ejffj~j) (2.12a) 
J 
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where ej is 1 o r -1  and 

a*•(nt) = exp(--iHNt) a*(n) exp(iHNt) (2.13) 

and we can see that our approximate distributions are linear combinations 
of momentum integrals--with weight [exp(+i~j~)][og(~)]-l/Z--where 
integrands are of the type 

N N 
�9 " ~ u.*(pa) . . . . . .  k(Pk) [~ON, a*N(nl q), . . . ,  a*N(nk tk)~ON] (2.12b) 

n 1 1~ k 

The convergence of the sequences of approximate distributions (2.12) 
will be provided by the existence of limits of all the expressions (2.12b). 
Such an expression has been discussed by Mikusifiski (1968), who gave the 
sufficient condition for the existence of its limit in the distributional sense. 
This condition means that there must exist such finite numbers K and L 
that at fixed times ta,..., t and for all na,..., n the following inequality must be 
satisfied: 

(tPoN, a*N(nl q),...,  a*N(nk tk) ~kON) 
(1 + nlr),..., (1 + nk L) < K (2.14) 

In this condition (which we shall refer as the Mikusifiski condition) the 
a*(n)-operators are involved and they are known, and do not depend, for 
example, on the HN-choice. Since the OoN-state is determined by the HN- 
operator, the problem whether the Mikusifiski condition holds or does not 
hold is dependent only on the way HN is expressed by the a*(n)-operators, 
Hence, the existence of the limit case depends on the model, i.e. on the parti- 
cular shape of the HN-operator. 

3. The Free FieM 

The programme introduced in the foregoing section should be executed 
at first for a free field where the shape of Wightmann's distributions is 
known. We define the free field case by 

HN = Ho~, (3.1) 

and q~ON is to be understood as the ground eigenstate of the HoN-operator. 
The existing free field theory will be called here 'the exact theory'. By showing 
that some numerical results obtained in low orders of our approximation 
(i.e. for small N) do not differ much from the results of the exact theory 
it will be made plausible that our approximation is useful for some numerical 
computations in a theory with interaction. 

Let us focus attention on the HoN-operator given by (2.10). When intro- 
ducing the hermitian matrix M" 

M,,, = I d3P ~o(p) u.*(p) uo,(p) (3.2) 
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it can be written as follows: 
N N 

HoN = ~ ~ M..'at(n)a(n ') 
n=O n=O 

o r  
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(3.3) 

N 
~roN= ~ ;~.a*(n)a(n) (3.3a) 

n=0 

where 20 . . . . .  2N >t 0 are eigenvalues of  M (which is positive definite) and 
a*(n) are obtained f rom a*(n) within a unitary transformation which was 
chosen to diagonalise M. qSoN must obey 5*(n) a(n) ~o~ = 0 for each n and, 
consequently, a(n) qSoN = 0. In view of the irreducibility of  the representation 
we get 

CoN = r (3.4) 

i.e. CoN is the same as the vacuum in each order N. 
On the standard way we can express the a*N(nt)-operators (2.13) by 

a *  (/ '/) : 

N N 
atN(nt) = E [exp(iMt)].,.ar aN(nO = E [exp(-iMt)]..,a(n') 

/It=O tlt=O 

(3.5) 

The Mikusifiski condition (2.14) is to be verified for all k separately. For 
k = 2  the only contribution to [r162 will be 
(r a~(nl tO a*N(n2 t2) r as is seen from (3.5), and we have 

~ f d3p~d3P2 .-- W2~(21q,Y~2t2)-2()~z)3 ~7---~.~---77.~ exp[t(plxl 
= .5=o "v/[c~176 

-/3222)1 {exp[-iM(q - tz)]}.l.2 u.~(~) u'2(~2 ) (3.6) 

As one can see, in the k = 2 case the Mikusifiski condition holds because of 

]({exp[-iM(q - t2)]}).~.2[ < oo (3.7) 

For  odd k the limit also exists because we have 

W,N('2a tj,...,2~tk) = 0 for odd k (3.8) 

and for even k, k > 2 one can easily show that the Mikusifiski condition 
also holds, provided it holds for k = 2. 

Since the limits of  sequences of  our approximated distributions exist 
for all k, we can try to find them. We have immediately 

lim WkN(21t~ . . . .  ,2ktk) = 0 for odd k (3.8a) 
/I-+ o~ 

Furthermore, it will do to find the limit of  WS(2~ h,  22 t2) at N - +  m. In order 
to do so we introduce 

N N 

IN(~,~2) = ~ ~ u.~(~O(exp[-iM(q- t2)]}.~.2u*2(~2) (3.9) 
nl~O n2=0 
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and the problem is to find 

lim W2~(~1 f i , ~  t2) 
N--) oo 

[ 1  f d3ptd3Pz . . . .  -ffzY~z)IN(ff~,ff2)) (3.10) = lim ~ j C ~ 2 ) ] e x p t t p l x l  

where the convergence has to be understood in the distributional sense. The 
introduced IN(/31,~2) can be written as follows: 

[t(t2 - 1)] u . . . .  M k" u* '~ ' ~.. nx[Pl) ~ )n ln  z n z t F 2 J  

n l=0  n2=0 k=0 

~ [i(t2-- ta)] ~ N N ~ N 

k~0 n l~0  v2~0 Vl=0 Vk_l=0 

= [i(tz~ltO] ~ . . . .  f daq~~ N u ~ X ""  
k~O nl~O n2~O vl=O v/~_ 1~0 

U 

and denoting 
N 

K~(~,,~) = Z u.,(~Ou*,(,~O 
nl~0  

N 

Vl~O 

we get 

IN(ffl,~2) = ~'Z [i(tz -- t0] k f daql, . .. dSqk o9(~t0, . . . ' 
k! 

k=O 
o~(qk) KN(~I,~I), " "  " ,  KN(*k,P2) (3.11) 

The sequence of  regular distributions W2N(Xitx,22tz) converges, whence 
we can attach to IN(~,~2) an interpretation of  a convergent subsequence 
of  the following sequence: 

IN1, "",  N~+1(~1,~2) 

= ~ [i(t2~v " tO]kf daq l , . . . ,  d3qkco(710, .. ., co(~k)KNl(/31,~0,"" ", 
k=O 

Ku~_,(~,P2) (3.12) 
and write 

lira IN(ffl,P2) = lim I& ..... Nk+I(P~,Pz) (3.13) 
N~ov N 1, . . . .  Nk+l~OO 

Thus, finding, for example, the limit at N~ ---> 0% becomes the same as evalu- 
ating 

NI 

lim f daql KN~(fil,~tl)f (qO = lira f d3ql ~ u~(fil)u,*(~Of(O0 
NI~ NI-)cO n=O 
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where f(~O = o9(ql)KN2(ql,~t2)la2 . . . . .  t. For f(~l)  e S(R a) the last limit is 
equal tof(~l).  In other words, we have 

lim K/vi(~i,Pi) = 6(a)(ff  1 - - q i )  
N1-+r 

and at N1 . . . .  , Nk+l---> oo we get 

lim /N(~l,i~) = exp[--ico (i~l)(t, -- t2)] 6 (a) (/31 --P2) (3.14) 
NI.-+ m 

The sequence W2N(2, t,,2= t2) has to converge in the distributional sense 
and the problem (3.11) reads finding 

lim f d a xi d a xz g i * ( 2 1 )  g2(22) WzN(2i ti,22 tz) 
N-+co 

where g,(2a) and g2(2=) are some test functions from S(Ra). Making use of 
the result (3.14) we get 

lim f da x~ da x2 g**(2~) g2(22) WzU(21 tl,22 tz) 
N-+ oO 

1 d p . , . . ,  xexp[- io~(~)( t l - t2)]  (3.15) = ~  

where ~ denotes the Fourier-transform ofg. In other words, we have in the 
distributional sense 

1 fd p ~-.~l)m W2N(21 ta,~l t2) = 2(2~)~---- ~ - - ~  exp{i[~(21 -- 22) -- a~(~) (q -- t2)]} 

(3.16) 

which is just the two-point Wightmann's distribution representing the exact 
theory. Thus, we have shown that the limit case of our approximate theory 
is nothing else but, as we could expect, the well-known free field theory. 

Let us discuss how much some numerical result of our approximate 
theory and the exact theory differ one from the other. In order to do that 
we should compare the integrals 

f daxld3x2 g~*(21) W2N(~q,22t2) for N =  0, 1, 2, g2(22) I o l  

with the formula (3.15). Let us consider the tl = t2 case only, while gl(2~) 
and &(2z) can be chosen so that g~ = g2 = g and 

K 
~(p)= ~ a, u,(~)a/[co(/3)] (3.17) 

n=0 

with finite K and a, being some numbers. For the exact theory we get, when 
substituting (3.17) into (3.15), 

"21 a(daP-~ ig(~)l 2 = 51 d~pl u.O )l = I,,.[ = (3.18) 
n~O n~O 
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and for the approximate theory, when coming back to the formula (3.6) 
we get for N = 0, 1, 2, ... 

N if d3pld3pz ~(P2) ~ u,,(fil) u,,*(/32) 
co(p2)] 

n=O 

1 N 
= -2 ~ Z a,* aj f d 3pl d~P2 u,*(PO us(fi2)u,(fil)u,*(~2) 

n=O t , j=O 

N 

= ~ ~ [a.[ z (3 .19)  
n=0 

When comparing the results of (3.18) and (3.19) it is seen that in order to 
obtain identical results it would be sufficient to take the order of approxima- 
tion N = K. However, this conclusion is due to test functions of the form 
(3.17) which for finite Kdo  not span the Schwarz space. Summarising, in the 
free field case and for certain (extensible when taking N > K) classes of  
equal-time states the approximate theory and the exact theory should yield 
identical results. 

In the case of interaction a theory corresponding to the known free field 
theory (which we called 'the exact theory') has not been yet formulated, 
and we could only compare numerical results of an approximate theory 
with interaction with those of its limit case. However, it would mean that 
this limit case is assumed to be just a quantum field theory with interaction. 
We think such an assumption to be plausible. Thus, the given construction 
involving the Mikusifisld condition implies one of the possibilities of how to 
attempt the proof  of existence of non-trivial models. 
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